
Supplementary Materials: Eco-evolutionary dynamics,
density-dependent dispersal and collective behaviour: implications for

salmon metapopulation robustness

We aim to understand how straying between populations may affect phenotypic evolution, and
how this evolutionary change may in turn lead to changes in ecological dynamics as they unfold.
To do so, we build upon Lande’s classic formulation of phenotypic evolution [2]. In what follows,
we 1) re-derive Lande’s phenotypic evolution equation for one population to introduce the reader
to the main concepts and assumptions of the framework used, and, 2) explain how we used this
framework for the case of two populations connected by dispersal.

I. Phenotypic evolution from one to two sites

Trait evolution in one site To keep track of the evolution of a phenotypic trait x with
probability density function p and mean x and variance σ2, we need a few basic ingredients. First,
we define the mean fitness,W of the population of individuals bearing the trait x as:

W =

∫
p(x)W (x) dx. (1)

We also define the mean phenotype in the population as

x =

∫
xp(x) dx, (2)

and the mean phenotype after selection (but before reproduction), xw [1], as:

xw =
1

W

∫
xp(x)W (x) dx. (3)

Then, we can assess how the change in the phenotype x occurs over time using

∆x = x(t+ 1) − x(t), (4)

which can be rewritten as:

∆x = h2(xw − x(t)), (5)

where h2 is the heritability of the trait, and the difference xw − x(t) is the classical "selection
differential" [1, 2]. In other words, 5 is none other that the Breeder’s equation.

To understand how x changes over time, we first need to understand how the mean fitness of the
population changes with a change in the mean trait value or ∂W

∂x (i.e. the shape of the "adaptive
landscape"). Using 1 we have:

∂W

∂x
=

∂

∂x

∫
p(x)W (x) dx. (6)

Using Leibniz rule we can pass the derivative under the integral sign,

∂W

∂x
=

∫
∂p(x)

∂x
W (x) dx, (7)

and assuming p is Gaussian (i.e. of the form 1√
2πσ2

e−
1
2

(x−x)2

σ2 ), we calculate the derivative of p with
respect to x, which leads to:

∂W

∂x
=

∫ [x− x

σ2

]
p(x)W (x) dx. (8)
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We can now expand in 8 to get,

∂W

∂x
=

1

σ2

∫
xp(x)W (x) dx− x

σ2

∫
p(x)W (x) dx, (9)

which making use of equations 1 and 3, becomes ∂W
∂x = W

σ2xw − x
σ2W , and can be factored as

∂W
∂x = W

σ2 (xw − x). Using 5, we can rearrange this expression to obtain an equation that relates
the change in the average phenotype from one time step to the next to the amount of heritable
variation, σ2h2, and the adaptive landscape ∂W

∂x :

∆x =
σ2h2

W

∂W

∂x
= σ2h2

∂ lnW

∂x
. (10)

Equation 10 (Lande 1976’s equation 7), is a staple of evolutionary biology. It is also possible to
use 10 and 4 to write a recurrence relationship that allows to simulating evolutionary change over
time in a trait x as:

x(t+ 1) = x(t) + σ2h2
∂ lnW

∂x
. (11)

Equation 11 thus assumes the existence of one population with a normally distributed trait in
which selection occurs before reproduction, the probability of surviving to reproduce depends on
the value of the trait different individuals have, and that the trait is normally distributed after
reproduction.

Expanding the single site approach to two sites linked by dispersal In what follows
we show how Lande’s approach can be used to calculate the magnitude of the phenotypic change
between two populations with one trait with two different means in each site. We will then 1)
show why it is not necessarily useful to use the obtained expression in a simulation context, and
2) introduce an approximation that retains the features important for exploring how trait and
population dynamics impact each other in the case of dispersing populations.

We explore the case of two populations that exchange migrants, with a normally distributed
trait x that controls recruitment (as explained in the main text), with each population having a
different mean, µi and µj , and same variance σ2. For simplicity, we will focus on a local population
i relative to the connected population j.

When individuals from population j stray into population i, and individuals of population i stray
into population j, the phenotypic distribution of trait x in population i is a mixture distribution,
p(x), of the form:

p(x) = ωig(x, µi) + (1 − ωi)g(x, µj). (12)

where g(·) is the Gaussian probability density function, and ωi is the proportion of the mixed
population that is composed of individuals local to site i relative to those that have dispersed into
site i from site j. This distribution has a mean x = ωiµi+(1−ωi)µj . As before, we define the mean
fitness as in equation 1, only that now p is a mixture distribution. Let us use Lande’s approach to
obtain an expression for the change in the mean phenotype of the mixture distribution from one
time step to the next. We thus ask, what is the change in W with a change in x? We can use
Lande’s approach [2] to derive equation 7, replacing p(x) by the mixture (equation 12) to obtain

∂W

∂x
=

∫
∂(ωig(x, µi) + (1 − ωi)g(x, µj))

∂x
W (x) dx. (13)

To obtain the derivative of equation 13, we introduce a change in variables, which is provided by
the fact that x = ωiµi + (1 − ωi)µj : {

µi =
x−(1−ωi)µj

ωi

µj = x−ωiµi
1−ωi

. (14)

We can thus replace equation 14 into 13,

∂W

∂x
=

∫
∂(ωig(x,

x−(1−ωi)µj
ωi

) + (1 − ωi)g(x, x−ωiµi1−ωi ))

∂x
W (x) dx, (15)
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which, after expanding and taking the derivatives with respect to x becomes:

∂W

∂x
=

∫
ωi

[
x− x−(1−ωi)µj

ωi

ωiσ2

]
g(x,

x− (1 − ωi)µj
ωi

)W (x) dx (16)

+

∫
(1 − ωi)

[
x− x−ωiµi

1−ωi
(1 − ωi)σ2

]
g(x,

x− ωiµi
1 − ωi

)W (x) dx.

To simplify notation, at this point we can come back to the original variables µi and µj . We then
expand and collect terms to get:

∂W

∂x
=

1

σ2

[∫
xg(x, µi)W (x) dx− µi

∫
g(x, µi)W (x) dx (17)

+

∫
xg(x, µj)W (x) dx− µj

∫
g(x, µj)W (x) dx

]
.

Using equations 1 and 3, we can define the following quantities,

W i =

∫
g(x, µi)W (x) dx (18)

W j =

∫
g(x, µj)W (x) dx (19)

xw,i =
1

W

∫
xg(x, µi)W (x) dx (20)

xw,j =
1

W

∫
xg(x, µj)W (x) dx, (21)

then replace them into equation 17:

∂W

∂x
=

1

σ2

[
xw,iW i − µiW i + xw,jW j − µjW j

]
=

1

σ2

[
W i(xw,i − µi) +W j(xw,j − µj)

]
.

(22)

Using equation 5 and rearranging terms we get:

W i∆µi +W j∆µj = σ2h2
∂W

∂x
, (23)

with W = ωiW i + (1−ωi)W j . Equation 23 relates how changes in either µi or µj lead to changes
in fitness, and vice-versa. However, it doesn’t tell us anything as to how straying may lead to
evolutionary change, or how that may feedback onto ecological dynamics. Because of this, we will
once again use the change of variables in 14, to rewrite 23 as:

W i

(∆x− (1 − ωi)∆µj
ωi

)
+W j

(∆x− ωi∆µi
1 − ωi

)
= σ2h2

∂W

∂x
, (24)

which can be simplified and rearranged to obtain an expression for the change in the mean pheno-
type of the mixture distribution,

∆x =
[
σ2h2

∂W

∂x
+
( (1 − ωi)

ωi
W i∆µj +

ωi
1 − ωi

W j∆µi

)] ωi(1 − ωi)

(1 − ωi)W i + ωiW j

. (25)

By multiplying 25 by W
W
, we can further rewrite the equation as:

∆x =
[
σ2h2

∂ lnW

∂x
+

1

W

( (1 − ωi)

ωi
W i∆µj +

ωi
1 − ωi

W j∆µi

)] ωi(1 − ωi)W

(1 − ωi)W i + ωiW j

, (26)
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which has a similar form to Lande’s equation (10), but shows the explicit dependence of the change
in the mean of the mix on the proportion of straying individuals. A symmetrical expression can
be derived for the other site.

While some understanding can be gained using equation 26, the expression does not easily
allow us to simulate the change in x over time because the change in µi and µj is difficult to track
in closed form. Moreover, this equation only holds for the first time step, and as new dispersing
individuals arrive and the trait distribution is again updated by the influx of individuals from the
other site, the mix becomes a mix of mixes, such that the analytical expressions presented above
no longer hold.

The Gaussian approximation used in the main text The above issue presents us with a
tradeoff: we can either track changes in phenotype exactly for a single generation, or we can track
changes in phenotype across multiple generations using an approximation. Given that our central
goal is to gain an understanding of the feedback between evolutionary and ecological processes
in salmon populations with dispersal in explicit space, we simplify the complexities created by
phenotypic evolution by assuming that, as new migrants arrive, the mixture distribution can be
locally approximated by a Gaussian distribution with a mean equal to that of the mix. Based on
this assumption, we can directly use Lande’s equation (here equation 10), without violating the
original assumptions that led to its current form.

The model used in the main text thus assumes the existence of a normally distributed trait
in each population with means µi and µj . After straying occurs, the populations now have a
mixture distribution as in 12. To keep track of the mean of that mix, we approximate the mixture
distribution as a Gaussian with mean x = ωiµi+(1−ωi)µj . Selection and reproduction thus occur
at the same time leading to a new generation with a normally distributed trait distribution. In a
previous paper by Ronce and Kirkpatrick [3], it was shown that assumptions similar to those made
here do not qualitatively alter the observed ecological or evolutionary dynamics.

[1] Falconer DS, 1967 Introduction to Quantitative Genetics. Edinburgh: Oliver and Boyd LTD
[2] Lande R, 1976 Natural selection and random genetic drift in phenotypic evolution. Evolution 30,

314–334
[3] Ronce O, Kirkpatrick M, 2001 When sources become sinks: migrational meltdown in heterogeneous

habitats. Evolution 55, 1520
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Figure 1: Example of the numerical procedure used to estimate recovery time. After a disturbance is
introduced, the recovery time is calculated by measuring the point in time where NT (in black), which is
the aggregate of both populations (blue, red), settles to within one standard deviation of the new
equilibrium N∗

T .
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Figure 2: The effects of asymmetrical vital rates on the formation of dominant/subordinate states as a
function of straying m. (a) Steady state densities for populations with symmetrical values (α = 0) in
vital rates rmax and β are shown with cool (blue) tones. As the asymmetry among populations between
sites increases (α > 0), vital rates diverge, such that the maximal growth at sites 1 and 2 is now
rmax,1 = (1 + α)rmax,2 and β1 = (1 + α)β2 where α is increased from 0 to 0.1. Steady-states for
populations with increasingly asymmetric values are shown in warmer (red) tones. (b) Steady states for
populations with higher asymmetric values (0.1 ≤ α ≤ 0.4) for vital rates rmax and β. Note the change in
scale compared to panel (a). If asymmetry in vital rates is very high, the pitchfork bifurcation occurs at
values of m < 0. We observe that increasing the asymmetry in vital rates – even to very high levels –
does not impact the qualitative nature of the dynamics.
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Figure 3: Comparison of portfolio effects vs. recovery time following the near-collapse of both
populations where straying is assumed to be density-independent. Parameter values used are those
reported in table 1, with values of 0 < h2 ≤ 0.5 and for 0 < m ≤ 0.5.
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